

Heavy Ion Testing of Freescale Nano-Crystal Nonvolatile Memory*

T.R. Oldham,¹ M. Suhail,² E. Prinz,² P. Kuhn,² H. Kim,³ and

K.A. LaBel⁴

1. QSS Group Inc.

2. Freescale Semiconductor, Inc.

3. Jackson & Tull Aerospace, Inc.

4. NASA GSFC

Non-volatile Memory Technology Symposium 15-17 Nov 2004

*Sponsored by NASA Electronic Parts and Packaging (NEPP) program, Defense Threat Reduction Agency, and Freescale Semiconductor

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

Outline

- Introduction
- Description of Devices
- Test Procedure
- Experimental Results
- Analysis and Discussion
- Conclusions

Introduction

- Floating Gate (FG) non-volatile memories (NVM) are widely used in space systems
 - Commercially available
- However,
 - FG has been shown to be sensitive to ionizing radiation
 - Concern that FG cannot be scaled below 100 nm for reliability issues
- Nanocrystal (NC) memory has the potential to
 - Scale <<100 nm with increased reliability at 90 nm and below, as well as,
 - Increase radiation resistance

Nanocrystal Storage for Embedded NVM

- Write/Erase Voltage Reduction
 - ±6...±7V write/erase voltages instead of ±9V
 - 50% periphery area reduction
- No SILC (stress induced leakage current)related extrinsic reliability issue
- No gate or drain coupling effect
- Process Simplicity

Floating gate: adds 6-11 masking steps

Nanocrystal: adds 4 masking steps

Description of Devices

- Write by CHE (channel hot electron) injection
- FN (Fowler-Nordheim)Erase
- Read by detecting V_T
 (threshold voltage)
 difference (zero V_T is
 about 2V greater than
 one V_T)
- Nominal 6V supply

Experimental Procedure

- Devices under test (DUTs)
 - 130 nm CMOS, part of 90 nm development process
 - Nanocrystal
 - 6V Vdd
 - 0.1V Vt margin
 - FG
 - (9V Vdd)
 - ~2V Vt margin
- Exposures
 - Heavy ion at Texas A&M University (TAMU) Cyclotron
 - 15 MeV/nucleon cocktail
 - Naval Research Laboratories' Pulsed laser
- Test modes
 - Static, dynamic read, dynamic write, dynamic erase tests
- All tests performed at room temperature and nominal Vdd, frequency ~25 kHz

Experimental Apparatus

Heavy Ions Used at TAMU

lon	E (MeV)	LET (MeV/mg/cm²)	Range (μm)
Ar	497	8.7	175
Kr	916	29.3	117
Xe	1299	53.8	102
Au	2247	85.0	118

Heavy Ion Results - Nanocrystal

- Errors observed in all test modes
 - All errors appear to be static errors, even in dynamic tests
 - Cell values changed and remained at values until re-written
- Fewer errors observed in write and erase tests
 - Errors are being overwritten during exposures
- All errors are zeroes turned into ones (loss of stored electrons)
- Error rate depends on voltage margin
 - 0.1 V used for this test
 - Production chip would have >> margin
- High current state observed, suggestive of latchup, but parts remained fully functional
- No single event functional interrupts (SEFIs) noted
- Limited test on FG
 - Linear Energy Transfer (LET) of 29 Mev*cm²/mg: no Single Event Effects (SEE) observed

Read Errors – Nanocrystal Heavy Ion

Write/Read Errors – Nanocrystal Heavy Ion

Write/Erase/Read Errors – Nanocrystal Heavy Ion

Laser Test Results – Nanocrystal and FG

- No bit errors observed
 - Laser will not produce ionization in SiO₂
- No errors observed in control circuits on NC parts
- Apparent latchup in FG parts
 - Possibly due to higher voltages applied
 - Devices could not be erased after exposure, including ultraviolet (UV) erase

Threshold Voltage Distribution

Discussion

- Charge loss, from observed V_T shifts, is 1-2 orders of magnitude greater than positive charge deposited by ion
 - Micro-dose (alone) not sufficient to explain observed charge loss
- Cellere et al. (IEEE TNS Dec 2002) reported similar results for FG cells—presented three possible models, but found problems with all three
 - Models should not apply to NC arrays, even if problems were resolved for FG—single conducting defect should not drain charge from whole array
- Underlying mechanisms not yet explained

Conclusions

- Nanocrystal memories are promising for space applications
- Bit error rate is generally better than previous reports for FG flash NVM
- Only static errors (loss of electrons) observed
- No SEFI
- No unambiguous evidence for latchup